Close Menu
Technotification
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Technotification
    • Home
    • News
    • How To
    • Explained
    • Facts
    • Lists
    • Programming
    • Security
    • Gaming
    Technotification
    Home › Artificial Intelligence › Google’s “What-if” tool analyzes ML Models without writing code

    Google’s “What-if” tool analyzes ML Models without writing code

    By Vikram Singh RaoSeptember 15, 2018
    Facebook Twitter Reddit LinkedIn
    google's what-if tool for analyzing machine learning models without writing any code

    Contents

    • The What-If Tool For Probing Machine Learning Models
      • Finding the Counterfactuals
      • Demos of What-If Tool
      • Putting the What-If Tool in Practice

    The What-If Tool For Probing Machine Learning Models

    When it comes to building a Machine Learning(ML) system, training a model is not enough. Instead, you need to ask lots of questions. Rather than just behaving a like a typical programmer, you need to act as a detective whereby you ask tons of questions. By being inquisitive, you will have a better understanding of how the model works.

    Some of the questions that you need to ask include: Do the changes on a datapoint affect the predictions that the model will make? Does the model perform in a different manner when exposed to various groups? Is the dataset that I am testing my model on diverse? If so, what is the magnitude of the diversity?

    As you can see getting concrete answers to these types of questions is not an easy process. Most ML programmers usually opt to write a one-off code that will be used to analyze the whole model. This option creates many loopholes and it is highly inefficient. For instance, it locks out the non-programmers and they won’t be able to participate in the process even when it is necessary.

    This is one of the things that Google AI PAIR initiative aims to address. It wants to bring in different people in the whole process of examining, evaluating and debugging machine learning systems.

    Google has already taken the first step toward achieving this goal. It has launched the What-If Tool. This is a completely new feature of the TensorBoard application that allows all interested users to analyze a Machine Learning model without having to write a single line of code. The What-If Tool uses dataset and pointers to a TensorFlow to produce an interactive interface which can be used for exploring the results of the model.

    Finding the Counterfactuals

    The What-If Tool is capable of visualizing the database on its own while at the same time is capable of editing the examples that you presented in your dataset. You simply need to click a button and you will be able to find the exact point where the model gives a different prediction. Such points are known as ‘Counterfactuals’ and they play a critical role in determining the decision boundaries of the model.

    Analyze the Performance and determine the fairness of the Algorithms

    You can also use the What-If Tool to explore the effects of using different classifications especially when you consider some constant constraints.

    Demos of What-If Tool

    To show the effectiveness of the What-If tool Google has released some demos which use the pre-trained models. These demos are used for:

    • Detecting the misclassifications of plants
    • Analyzing and assessing the fairness of binary classification models
    • Analyzing the performance of the model on different subgroups.

    Putting the What-If Tool in Practice

    To ensure that the What-If tool is effective in real-life ML applications, Google put it into various tests. Different teams tested it on different applications. One team discovered that the model was not detecting the whole feature of the dataset. This forced them to fix a bug in the model. In another team, the tool was used to organize their examples visually so that they discover familiar patterns. In overall everyone is hoping that the What-If tool will give a better understanding of the ML models.

    Share. Facebook Twitter LinkedIn Tumblr Reddit Telegram WhatsApp
    Vikram Singh Rao
    • Website
    • Facebook
    • X (Twitter)
    • LinkedIn

    I am an entrepreneur at heart who has made his hobby turned a passion, his profession now.

    Related Posts

    The Best Python Libraries for Data Visualization in 2025

    April 1, 2025

    Is C++ Still Relevant in 2025 and Beyond?

    February 20, 2025

    5 Best Programming Languages for Machine Learning in 2025

    February 18, 2025

    10 Must-Have Chrome Extensions for Web Developers in 2025

    February 17, 2025

    Difference Between C, C++, C#, and Objective-C Programming

    February 16, 2025

    How to Learn Programming Faster and Smarter in 2025

    February 14, 2025
    Lists You May Like

    10 Sites to Watch Free Korean Drama [2025 Edition]

    January 2, 2025

    10 Best RARBG Alternative Sites in April 2025 [Working Links]

    April 1, 2025

    The Pirate Bay Proxy List in 2025 [Updated List]

    January 2, 2025

    10 Best Torrent Search Engine Sites (2025 Edition)

    February 12, 2025

    10 Best GTA V Roleplay Servers in 2025 (Updated List)

    January 6, 2025

    5 Best Torrent Sites for Software in 2025

    January 2, 2025

    1337x Alternatives, Proxies, and Mirror Sites in 2025

    January 2, 2025

    10 Best Torrent Sites for eBooks in 2025 [Working]

    January 2, 2025

    10 Best Anime Torrent Sites in 2025 [Working Sites]

    January 6, 2025

    Top Free Photo Editing Software For PC in 2025

    January 2, 2025
    Pages
    • About
    • Contact
    • Privacy
    • Careers
    Privacy

    Information such as the type of browser being used, its operating system, and your IP address is gathered in order to enhance your online experience.

    © 2013 - 2025 Technotification | All rights reserved.

    Type above and press Enter to search. Press Esc to cancel.